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1. Introduction

Topological defects are interesting classically stable structures which are present in many

field theories. Their stability has a topological origin. This explains why they are rele-

vant for many areas of Physics. One of the most fascinating class of defects is given by

Abrikosov vortices [1]. In three-dimensional space they arise as one-dimensional (string-

like) structures acting as magnetic flux-tubes in type II superconductors. In a simplified

setting, they are minimum energy configurations in a two-dimensional Abelian-Higgs gauge

model [2]. Their stability arises from magnetic flux conservation. Apart from Supercon-

ductivity in Condensed Matter Physics there are many areas of Physics where this type of

solutions might be relevant. One of the most fascinating is in Cosmology, in which they

have been studied in connection to Cosmic strings for quite a while [3 – 5]. There seems to

be a wide class of possible extensions of the Standard Model [6, 7] which possess this kind

of solutions. Furthermore, other extensions involving extra spatial compact dimensions do

provide additional situations in which vortex solutions can appear and become relevant

[8 – 10]. They have also been studied within the standard model itself in connection with

the dual-superconductivity scenario of Confinement.

Being interesting mathematical objects in their own right and having shown a factual

and/or potential interest in Physics, vortex-solutions have been studied for a long time [11].
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A recent book [12] compiles many results accumulated over the years. The most fascinating

situation occurs for a particular value of the Higgs self-coupling marking the transition from

type-I to type-II superconductors. In this case, known as the Bogomolny limit [13], the

field equations (expressing the condition of minimal potential energy per unit length of the

string) reduce to the first order Bogomolny equations. Taubes [14] has demonstrated that

given q points (the location of the zeros of the Higgs field) there exist a unique solution to

the Bogomolny equations (modulo gauge transformations). Despite this simplification there

is no analytical expression for the solutions. For spherically(in 2-d) symmetric solutions,

including the single vortex case, the asymptotic behaviour and a Taylor expansion in the

distance to the centre [15] has been obtained.

In ref. [16] we proposed a method to construct the solutions on the torus by means of

an analytic expansion in a parameter measuring the departure of the area from the critical

value (twice the flux, in units of the Higgs mass). It is known that for smaller areas there

are no solutions of the Bogomolny equations. The critical value of the area is the only case

for which there is an explicit analytic solution of the Bogomolny equations, although a

fairly dull one (vanishing Higgs field and constant magnetic field). In ref. [16] we computed

the first 51 terms in the expansion and found the method capable of describing the profile

of the solution even for fairly large torus areas, and arbitrary positions of the Higgs zeros.

We should stress here that, as mentioned in ref. [16], the usefulness of the idea goes

much beyond the torus case. Indeed, Bradlow [17] discovered that the Bogomolny equa-

tions can be generalised to a class of gauge-Higgs systems in compact Kähler manifolds. In

all cases there is a critical volume and the pattern is repeated. This critical case is referred

as the Bradlow limit, and corresponds to a particular value of a parameter appearing in

Bradlow’s formulation related to the volume. Our approach is that of expanding around

this value of the Bradlow parameter and is easily generalisable to other Kähler manifolds,

besides the torus. More general instances of this approach for higher dimensional theories

are also possible. As a matter of fact, our proposal originated from the study of self-dual

non-abelian gauge fields on the torus. In that case there are also no known analytic so-

lutions to the self-duality equations except for constant field strength solutions occurring

for particular sizes of the torus. In ref. [18] one of the present authors and collaborators

showed that one could consistently expand the solution for arbitrary sizes in a power series

in a parameter measuring the departure from the critical aspect ratios (which allow for

analytical solutions). The general setting, to be addressed elsewhere [19] involves pertur-

bations of the metric tensor about the particular values allowing for constant(uniform)

solutions. Finally, we should also comment that our method has also proven useful for the

study of non-compact manifolds. For example, if one is interested in studying vortices on

the two-dimensional plane then the torus can be considered as an infrared cut-off to be

removed in the infinite area limit limit. Indeed, our results of the previous paper and the

present one show that this methodology is competitive with other alternatives.

One of the advantages of having an analytic method is that it can be generalised with

fairly modest effort to other questions involving vortices. The present paper is devoted to

one of the most interesting applications which is that of studying the scattering of vortices.

Previously, numerical methods had been employed to study this point [20 – 22]. Indeed,
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what we will do is to make use of our expansion to compute the metric of the manifold

of solutions of the Bogomolny equations on the torus. This leads, within the geodesic

approximation [23], to the determination of the classical dynamics of these vortices. The

next section will be devoted to the presentation of the formalism and derivation of our main

formulas. In particular, we derive the general structure of the metric tensor to any order,

as a polynomial in certain coordinates of the moduli space. The explicit computation of

the first two orders for arbitrary number of vortices are collected in the appendix. We

then focused in the particular case of two-vortex scattering. The corresponding results are

presented in section 3. In particular, we give the value (up to machine double precision) of

the coefficients of the polynomial which defines the metric up to fifth order in the expansion.

This should provide a very good approximation to the metric not too far from the Bradlow

limit. As we approach the infinite area limit more and more terms of the expansion are

required. We went up to order 40 in our expansion to compute the salient features of

the scattering of vortices on the plane. Here, instead of computing the coefficients of the

polynomials, we defined a grid in the moduli space and computed the metric at these points

(up to order 40). From these values we determined the metric tensor for vortices in the

plane with an accuracy better than one per mille. Finally, in the last section of the paper

we give a summary and conclusions.

2. Critical vortex dynamics in the geodesic approximation

2.1 Vortices and the Geodesic approximation

Let us begin by recalling the Lagrangian density of the abelian Higgs model in four-

dimensional(4D) Minkowski space-time:

L = −1

4
FµνFµν +

1

2
(Dµφ)(Dµφ) − λ

8
(|φ|2 − 1)2 (2.1)

where φ is a complex scalar field, and Dµ = ∂µ − ıAµ is the covariant derivative with

respect to Aµ, the U(1) gauge potential. There exist stationary, z-independent solutions of

the classical equations of motion characterised by a quantised magnetic flux 2πq (q being

an integer) through the x-y plane, known as multi-vortex solutions. The Nielsen-Olesen [2]

vortex (N-O vortex) is the simplest solution, having q = 1. Its potential energy distribution

has the shape of a thick string parallel to the z-axis having a finite string tension (energy

per unit length). A particularly interesting case, which we will refer as “critical”, occurs

for λ = 1. In that case the equations of motion reduce to first order equations, known as

Bogomolny equations, that in our units and for positive flux are given by:

(D1 + ıD2)φ = 0 (2.2a)

B =
1

2
(1 − |φ|2) (2.2b)

where B is the z-component of the magnetic field. The corresponding solutions, for which

the string tension is now given exactly given by π|q|, will be referred as critical multi-

vortex solutions (in the literature they are sometimes called self-dual vortices). The space
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of multi-vortex solutions is continuous and can be parameterised by 2q real numbers, which

can be naively interpreted as the the x-y locations of q N-O critical vortices. The potential

energy profile for widely separated vortices supports this interpretation. Individual N-O

vortices are exponentially localised (energy density decreases exponentially away from its

centre) with a typical size of order 1 in our units. For vortex separations of this order and

smaller, the field distribution begins to depart sizably from a naive superposition of N-O

vortices, but still the Higgs field vanishes at q locations in the x-y plane [14]. The location

of these zeroes will hence serve as coordinates labelling the space of multi-vortices.

If we are interested in dynamical processes, we can consider solutions of the classical

equations of motion which tend to well-separated vortices in the past. This can be regarded

as a scattering process involving two or more vortices. Numerical experiments have been

performed by integrating the equations of motion to describe this evolution process [22, 24,

21]. For small initial velocities of the vortices it was suggested [23] that the motion can be

well-approximated by the motion within the space of multi-vortex solutions, as this costs

no potential energy. This is referred as geodesic motion [23, 25]. This is confirmed to be

rigorous in the limit of small velocities [26], and numerically [21] it has been shown to be

a good approximation even up to relatively high velocities (0.4c).

Within the context of the geodesic approximation, the kinetic term in the action be-

comes a quadratic form in the time derivatives of the position of the q zeros of the Higgs

field. From a geometrical stand-point this quadratic form can be regarded as a metric in

multi-vortex space. The trajectories which are solutions of the equations of motion are the

geodesics corresponding to this metric. This explains the name given to this approximation.

Notice that the non-trivial scattering of vortices destroys the naive interpretation of

vortices as non-interacting objects. The latter image is based on the fact that the potential

energy is independent of the position of the vortices. Instead, a very nice physical interpre-

tation of vortices can be given [27] in which a vortex is considered a point particle with a

magnetic charge and a magnetic dipole moment. With this in mind, the interaction of two

static vortices can be shown to be zero, but when the vortices move along some trajectory,

it can be shown that the interaction between them is exactly what is expected for large

separation between vortex centres.

Despite the nice formalism and results described in the previous paragraphs, the main

difficulty in studying both static and dynamical properties of vortices is that there are

no known analytical solutions of the Bogomolny equations, not even for the q = 1 case.

Most studies rely on numerical methods which often make use of symmetries to reduce

complexity [2, 15, 28].

2.2 Vortices in compact manifolds

One can extend the previous results to more general space-times. For example, one can

generalise the Bogomolny equations [17] to a class of systems with Higgs and gauge fields

in spaces which are arbitrary Kähler manifolds. In this construction there is a natural

parameter, which we will call the Bradlow parameter, which measures the spatial volume

in units of the inverse photon or Higgs mass (which are equal at criticality). In what follows,

we will restrict to 2 dimensional compact spaces, extending the previously described case
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of Euclidean space. These solutions can be regarded as solutions in higher dimensional

spaces, not depending on the additional coordinates. The space of solutions (moduli space)

of the corresponding Bogomolny equations turn out to be 2q-dimensional manifolds. The

kinetic term induces a metric and, hence, a Riemannian structure on them. One can

also introduce a complex structure and show [21] that they become Kähler manifolds.

Some global properties, such as the total volume of these manifolds of moduli [29], can be

determined in terms of the properties of the 2-d space manifold.

Obviously, the simplest (and usually the most interesting) cases arise for the sphere

S2 and the 2-torus T
2, which have been explicitly addressed in the literature [30 – 32]. The

interest of these extensions goes beyond the simply academic or purely mathematical one.

The torus might, for example, represent the behaviour of vortices on a dense environment.

Furthermore, there is an increasing interest in vortex solutions within physical scenarios

with extra dimensions [8 – 10]. Frequently the latter are compact and have two-dimensional

cycles, so that these types of solutions are present. A final motivation could follow from our

work, which shows that one can use the torus results to obtain information about vortices

on the plane. From now on we will concentrate on the flat torus case.

Let us consider a two dimensional torus, described as a single patch with coordinates

x1 and x2 having orthogonal periods of lengths l1 and l2 respectively. We consider the

metric to be Euclidean (other constant metrics can be easily considered), so that the total

area is given by A = l1l2. We can also introduce the complex coordinate z and its complex

conjugate z (in general, we will denote complex conjugation with an “overline” symbol),

and their corresponding partial derivatives:

z =
x1 + ıx2

2
; z =

x1 − ıx2

2
(2.3a)

∂ = ∂1 − ı∂2; ∂ = ∂1 + ı∂2 (2.3b)

Now we will briefly revise our formulation, as given in ref. [16]. The vector potential (as

any one-form in this complex manifold) can be combined into a complex valued function

((1, 0)-form) A(z, z) = A1(xi)− ıA2(xi). However, this is not necessarily periodic, as a one-

form should. Its periodicity properties depend on the transition functions on the bundle

(See ref. [33] for a simple introduction to the subject of gauge fields on the torus). However,

if A(0) is a specific gauge field satisfying the boundary conditions, then A−A(0) is periodic

and we can make use of the Hodge decomposition theorem to parametrise our gauge field

as:

A = −ı∂H + v + A(0) (2.4)

where H = h − ıg is a complex-valued periodic function of the variables z, z, and v is

a complex constant labelling the space of harmonic forms on the torus. The function

g describes periodic gauge transformations which are continuously connected with the

identity. The remaining discrete set of gauge transformations imply that one can regard v

as the complex coordinate of the dual-torus (having lengths 2π
l1

, 2π
l2

). The periodicity in v

can be easily guessed by computing the corresponding Polyakov loops (the holonomy).

Although a good deal of our formulas do not require a choice of the transition functions,

for actual calculations one is required. In that case we will take the following quasi-
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periodicity conditions for the field (section of the bundle):

φ(x1 + l1, x2) = e
ıπq

x2
l2 φ(x1, x2) (2.5)

φ(x1, x2 + l2) = e
−ıπq

x1
l1 φ(x1, x2)

where q is the first Chern-number of the bundle.

There is a natural choice for A(0) which we will adopt, namely that which leads to a

uniform field strength, B(0) ≡ f = 2πq
A . With our choice of the transition functions A(0) is

given by

A(0) = −ıfz (2.6)

We will complement our parametrisation of the gauge field eq. (2.4), with the following one

for the Higgs field:

φ =
√

εe−Hχ (2.7)

where ε = 1− 2f . The function χ satisfies the same boundary conditions as the Higgs field

(eq. (2.5) for our choice of transition functions).

Finally, we can write down the Bogomolny equations in our parametrisation:

(∂ + fz)χ = ıvχ (2.8a)

∂∂h =
ε

2

(
1 − e−2h|χ|2

)
(2.8b)

These equations can be solved sequentially. First, one solves for χ using the first equation.

Plugging the result into the second equation (known as the vortex equation) one solves for

h. As we will show, the solution of the second equation is unique given χ. Thus, the whole

structure of the moduli space of multi-vortex solutions resides in the first equation.

The constant v can be taken as one of the coordinates of the moduli space. The

remaining coordinates can be associated to the space of solutions at v = 0. This is so

because given a solution χ(v) of eq. (2.8a) for some value of v 6= 0 one can associate to it a

unique solution χ(0) for v = 0 as follows

χ(0)(z, z) = Tv

[
χ(v)(z, z)

]
≡ e−

|v|2

4f e
−ı
2

(vz+vz)χ(v)

(
z +

ıv

2f
, z − ıv

2f

)
(2.9)

Which is a translation up to a gauge transformation and a rescaling by a constant factor.

This result extends to eq. (2.8b) by also translating the function h, and adding a constant

to it. This shows that the moduli space of solutions has the structure of a fibre bundle

whose base space is a torus parametrised by v.

As explained in ref. [16], for v = 0 eq. (2.8a) has |q| linearly independent solutions,

which we will label χ
(0)
i (x). In that paper several choices of χ

(0)
i (x) are given. In particular,
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we will employ the following one:1

χ
(0)
s+1 = Ψ0s ≡

(
2ql2
l1

)1/4

efz(z−z)ϑ

[
s/q

0

](
2qπz

l1
|iq l2

l1

)
(2.11)

where s = 0, . . . , q − 1. They satisfy the following orthonormality conditions

1

A

∫

T2

d2x χ̄
(0)
i (x)χ

(0)
j (x) = δij (2.12)

Using the operator (Tv)
−1 one obtains an associated basis of the space of solutions eq. (2.8a)

for any v within one patch of the dual torus. A general solution of eq. (2.8a) is then given

by

χ(v) =

q∑

i=1

ciχ
(v)
i (2.13)

where ci are |q| complex constants. In principle, one might be led to conclude that the ci

and its complex conjugates, together with the coordinates (v, v) provide coordinates of the

moduli space of solutions. However, notice that the Higgs and gauge field are invariant (up

to a global gauge transformation) under the replacement:

ci −→ κci; h −→ h + log(|κ|) (2.14)

where κ is an arbitrary complex number. Hence, for fixed v the space of solutions becomes

topologically equivalent to the complex projective space CP
q−1 and the coefficients ci can

be regarded as homogeneous coordinates in this manifold. This completes the structure of

the moduli space as a fibre bundle with fibre F = CP
q−1. This result is a particular case of

the results of ref. [31] where this structure is proved for vortices in more general manifolds.

This parametrisation gives us the first set of coordinates that we will use

B1 = {v, v, ci, ci} (i = 1, . . . , q) (2.15)

A standard choice to obtain inhomogeneous coordinates is to divide all the ci by one of

them (say c1). This gives good coordinates in the patches where c1 6= 0. For the q = 2

case, since CP
1 ≈ S2, we will also make use of the standard spherical coordinates.

Another quite natural choice of coordinates of the moduli space is given by the position

of the zeros of the Higgs field {z̃r}. In ref. [16], we verified that the function χ(0) must have

|q| zeros (counted with multiplicity), and that the centre of mass of these zeros is located

in the point Z
(0)
c = 1

4(l1 + il2). Since the application of the operator Tv does not change

the number of zeros, the function χ(v) will also possess |q| zeros obeying

1

q

∑

r

z̃r = Z(0)
c + ı

v

2f
(2.16)

1The symbol ϑ

"

a

b

#

(z|t) represent the theta function with characteristics (a, b), and is given by

ϑ

"

a

b

#

(z|τ ) =
X

n∈Z

eiπτ(n+a)2e2i(n+a)(z+πb) (2.10)
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Hence, the coordinate v of the moduli space can be seen to be directly given by the location

of the centre of mass of the zeros of the Higgs field (note that the coordinate v must lie in its

proper range. This can always be achieved using the fact that the position of the zeros are

defined up to translations by one period). Then, one can take as coordinates of the fibre F ,

the position of the zeros relative to the centre of mass, ωi = z̃i − Zc (where Zc = 1
q

∑
i z̃i).

With an appropriate ordering of these relative coordinates, we can use the set

B2 = {v, v, ωi, ωi} (i = 1, q − 1) (2.17)

as coordinates of the moduli space.

From this second construction, it is clear that this moduli space is a complex manifold

having v and ωi as possible complex coordinates. Instead, one might use v and ci. The

corresponding change of coordinates (see ref. [16] for details) is holomorphic.

2.3 Bradlow parameter expansion

The main difficulty in obtaining the explicit form of the solutions is the non-linear character

of the vortex equation eq. (2.8b). In our previous paper we gave a recipe for solving it by

an expansion in the parameter ε, directly related to the Bradlow parameter. For ε = 0

the solution is given by a constant value of h. This constant is fixed uniquely by the flux

condition and the normalisation of χ. In particular, it vanishes if χ is chosen of unit norm.

In this limit the Higgs field vanishes and the magnetic field is uniform. For small positive

values of ε, one expects a solution which departs only slightly from a constant. In general,

one can write the solution of the vortex equation as a power series in ε:

h =

∞∑

n=1

h(n)εn (2.18)

Plugging this into eq. (2.8b) and matching equal powers of ε on both sides, one obtains a

series of linear non-homogeneous equations which allow the determination of the functions

h(n) iteratively. In practice, for the torus case the solution of the linear equations can be

accomplished by expanding h(n)(x) in Fourier series, whose coefficients can be determined

by the iterative procedure mentioned previously. The main difficulty is that to obtain these

coefficients one has to perform a increasingly large number of convolutions of the previously

determined h(m)(x). Fortunately, the Fourier modes of these functions fall very rapidly and

it is possible to compute the dominant ones with 10-15 significant digits by performing these

convolutions numerically (truncating the infinite sums down to finite sums).

In ref. [16] we were able to carry the ε-expansion up to order 51 with a fairly modest

computational effort. Having those many terms in the expansion allowed us to explore the

convergence of the series. It is, of course, impossible in this way to prove convergence of

the series. However, even if the series is asymptotic, it is possible to test what precision can

be attained for a particular value of ε. Here it is important to notice that by virtue of its

definition, the range of ε values that we are interested in goes from 0 to 1. The upper edge

of the interval ε = 1, corresponds to the infinite volume limit of the torus: the plane. The

results of our analysis turned out to be very positive. Meaningful results, comparing well in
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value and precision with that of other authors, were obtained for the worst possible case of

the plane (ε = 1). Our method, in contrast to these other results, gives us the solutions for

all torus sizes and can be applied irrespective of the value of q or the symmetries invoked.

Having an analytical expansion for the solutions has many advantages over purely numerical

methods. In particular, many different theoretical questions involving vortices can be

attacked in the same way. This paper develops one of these applications, the determination

of the dynamics of vortices within the geodesic approximation and our Bradlow parameter

expansion. In concrete, the goal is to compute the metric in the moduli space of multi-

vortices on the torus. This will be explained in the next subsection.

2.4 Derivation of the metric

We will now allow our fields Ai and φ to depend on time (while remaining z-independent),

but we will impose that at any time they correspond to a configuration of minimal energy

within the corresponding flux sector(2πq), i.e. a solution of the Bogomolny equations.

Therefore, the motion is indeed within the moduli space of solutions of the Bogomolny

equations.

To study dynamics we have to compute the kinetic energy, which in the A0 = 0 gauge,

takes the form:

T =
1

2

∫
d2x (Ȧ2

i + |φ̇|2) (2.19)

The potential energy is fixed to be one half of the total magnetic flux, and is time-

independent. Thus, the dynamics of the system is given by this kinetic term. This amounts

to a finite dimensional classical system, which corresponds to geodesic motion within the

2q-dimensional manifold of solutions of the Bogomolny equations. To determine the metric,

we simply have to parametrise Ai and φ and their time derivatives in terms of whatever

coordinates of this manifold we choose, and plug them into the expression for T .

We will be using the parametrisation of the Higgs and gauge fields introduced pre-

viously. In addition to the Bogomolny equations, we also need the dynamical equations

involving time derivatives. Some can be deduced by differentiating the Bogomolny equa-

tions (2.8) with respect to time. We have

(∂ + fz)χ̇(v) = ı(v̄χ̇(v) + ˙̄vχ(v)) (2.20a)

∂∂ḣ = ḣ|φ|2 − ε

2
e−2h ∂

∂t
|χ(v)|2 (2.20b)

One has then to add the Gauss constraint (one of Maxwell equations for the system)

∂iȦi = Im(φ̇φ) (2.21)

This equation can be combined with the time derivative of the second Bogomolny equation

to give a complex equation:

∂Ȧ = −ıφφ̇ (2.22)

In summary, the only equations that remain to be solved are:

∂∂h =
ε

2

(
1 − e−2hχ(v)χ(v)

)
(2.23a)

ÔḢ = εe−2hχ(v)χ̇(v) (2.23b)
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Where Ô ≡ −∂∂ + |φ|2. These equations determine both h and Ḣ in terms of χ(v) and

χ̇(v). Integrating both sides of eqs. (2.23), we obtain

1

A

∫
d2x e−2hχ(v)χ(v) = 1 (2.24a)

∫
d2x e−2hχ(v)χ̇(v) =

∫
d2x e−2hχ(v)Ḣχ(v) (2.24b)

that are basic equations for the constant pieces of h and Ḣ. Eqs. (2.23) and (2.24) uniquely

determine h and Ḣ given χ(v) and χ̇(v). Hence, parametrising χ(v) in terms of certain

coordinates of the moduli space, one can then use eqs. (2.23), (2.24), to express h and Ḣ

in terms of these coordinates and their time derivatives.

Using our parametrisation, we might express the kinetic term as

T =
1

2

∫
d2x

{
|v̇|2 + εe−2h

∣∣∣χ̇(v)
∣∣∣
2
− ḢÔḢ

}
(2.25)

=
1

2

∫
d2x

{
|v̇|2 + εe−2hχ̇

(v)
(
χ̇(v) − Ḣvχ

(v)
)}

This is the crucial formula from which the metric and its perturbative expansion can be

obtained. It is not hard to show that T is invariant under the replacement of χ̇(v) by

χ̇(v) −λχ(v) for any constant λ. This expresses the irrelevance of the normalisation of χ(v).

In eq. (2.25) the time derivatives of the coordinates appear in v̇ and χ̇(v). These two terms

are not independent variations within our fibre bundle choice of coordinates. One should

rather use v̇ and χ̇(0). For that purpose we need the formula

χ̇(v) =
d

dt

(
(Tv)

−1 [χ(0)]
)

= (Tv)
−1[χ̇(0) − ıv̇

2f
(∂ − fz + iv)χ(0)] (2.26)

Using this expression we might also relate the solution of eq. (2.23b) for v 6= 0, which we

will note Ḣv, with the corresponding one for v = 0:

Ḣv

(
z +

iv

2f
, z − iv

2f

)
= Ḣ (z, z) − iv̇

2f
(δ(z, z) + iv) (2.27)

where δ is the solution of the equation

Ôδ = εe−2hχ(0)(∂ − fz)χ(0) (2.28)

Now we should plug these relations into the formula for the kinetic term T , and after

changing variables in the integrals and decomposing χ(0) in the aforementioned basis, we

arrive at an expression of the form

T =
π

2

(
gvv(ci)v̇v̇ + giv(ci)ċiv̇ + gvi(ci)v̇ċi + gij(ci)ċiċj

)
(2.29)

Where gαβ is the induced metric in the moduli space (we follow the normalisation of

ref. [32]). Furthermore, giv and gvi vanish. To show this we focus on the term proportional

to v̇ in the expression of T . It has the form

iv̇

4f

∫
d2x I (2.30)
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where

I = (∂ − fz)χ(0)
[
χ̇(0) − χ(0)Ḣ

]
εe−2h = −∂∂∂Ḣ + ε∂Ḣ − 2∂(∂Ḣ ∂h) (2.31)

This, being the derivative of a periodic function, has a vanishing integral. By hermiticity

the same holds for the term proportional to v̇. In a similar fashion (by partial integration),

one can show that the term proportional to |v̇|2 is a constant, to be given below. Finally,

we arrive to the following expression for the metric

ds2 =
A2

4π2q
dvdv +

ε

π

∫
d2x e−2h

{
|χ̇(0)|2 − εχ̇

(0)
χ(0)

(
Ô−1

) (
e−2hχ(0)χ̇(0)

)}
(2.32)

The first term is the metric associated to the dual torus, while the second is the metric of

the fibre F . This factorised structure was previously found in ref. [31].

From now on we might focus upon the metric of the fibre F , which can be written as

ds2 =
1

π

∫
d2x εe−2hχ̇

(0)
(
χ̇(0) − Ḣχ(0)

)
=

−1

π

∫
d2x ∂

(
χ̇

(0)

χ(0)
∂Ḣ

)
(2.33)

Notice that, this time, the integral of a partial derivative does not vanish, because the

quantity inside parenthesis has singularities (poles) at the zeroes of χ(0). Hence, the metric

is expressed by the value of this function in the vicinity of these zeroes. This property was

discovered in ref. [21] for vortices on the plane. In particular, the metric is twice the sum

of the residues of the quantity inside brackets of the last equality at its poles.

Our method of computation of the metric follows from substituting into eq. (2.33) the

expression of h and Ḣ as a power expansion in powers of ε. This expansion follows from

solving eqs. (2.23) and (2.24) order by order in ε. The resulting expression of the metric

in the fibre F has the form

gij(ck) =

∞∑

N=0

g
(N)
ij (c, c)εN (2.34)

The computation of the first two orders is detailed in appendix A. The first non-zero term

in this series, is given by

g
(1)
ij =

A
π||c||2

(
δij −

cicj

||c||2
)

(2.35)

where ||c||2 =
∑

i |ci|2. This is just a multiple of the Fubini-Study metric. This result

agrees with the metric obtained in this limit in ref. [30], but for vortices living in the two

sphere S2. Using this result we can compute the volume of the fibre.

Vol(F) =
(εA)q−1

(q − 1)!
(2.36)

This value times the volume of the base-space dual torus matches the calculation done in

ref. [32], and generalised in ref. [29] to other manifolds. Furthermore, the result is valid to

all orders in ε.

In appendix A the second order is explicitly computed. The result involves certain

constants which can be expressed as an infinite sum over two integers, or as integrals of
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theta functions with characteristics. The general structure of the metric to all orders will

be described in the next subsection. It includes certain constants given by an increasing

number of infinite sums over integers. Fortunately, these sums are very fastly convergent

and a few terms suffice to obtain a double-precision (≈ 16 decimal places) numerical de-

termination. This fact enabled our study of the q = 2 case up to fortieth order, to be

presented in section 3.2.

2.5 Symmetries and general properties of the metric.

Here we will focus upon the metric on the fibre F expressed in homogeneous coordinates

ci. Some of its properties, which were known before, hold order by order in our expansion.

For example, we know that the metric is Kähler [21]. As mentioned previously, we also

know the total volume of the fibre [29]. Since the volume is already obtained at leading

order, this tells us that the higher order contributions do not contribute to it.

Another property of the functions gij(c, c) has to do with the homogeneous nature

of the coordinates, and has been mentioned previously. Translating the property to the

expansion coefficients we have: ∑

j

cjg
(N)
ij = 0 (2.37)

A more specific property of the terms g
(N)
ij follows from the ε-expansion of eqs. (2.23)

and (2.24): Each new order in ε is accompanied in the right-hand side by a power of

cicj/||c||2. Analysing in detail the different equations, we conclude that ||c||2g(N)
ij is a

polynomial of degree 2N in the variables ci

||c|| and its conjugates. This property is quite

crucial for our expansion, since it allows the exact determination of the metric to any finite

order in terms of a finite (and small for N small) number of coefficients. Combining this

fact with the previous properties, a reduction in the number of free coefficients follows. For

example, to leading order we have a polynomial of degree 2 in ci

||c|| . Property eq. (2.37),

reduces the indetermination to a single overall pre-factor, which is fixed by the volume.

Similar simplifications occur for the second order result, described in the appendix.

A further reduction in the number of free coefficients follows from symmetries. These

are isometries, which have an origin in a geometrical symmetry of the problem: transfor-

mations that leave the torus invariant. This includes reflections and rotations by π. If the

shape of the torus is square l1 = l2, we also have rotations by π
2 . In addition, we have

translations. This might look surprising, since we are restricting to a fibre which has a

fixed position of the centre of mass of the vortices. However, translations by a fraction

1/q of the total length in either direction do not change the position of the centre of mass.

This is a finite group with q2 elements.

In order to exploit the consequences of the symmetries one has to make a choice

of the basis χ
(0)
i . Here, we will give the results in the basis χ

(0)
s+1 = Ψ0s (defined in

eq. (2.11)). The explicit properties of these functions needed to express the requirements of

the symmetries are explained in the appendix of ref. [16]. Some subtlety is necessary. This

has to do with the fact that transition functions are, in some cases, not invariant under the

Euclidean transformations that are candidate symmetries. To recover the symmetry one

– 12 –
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has to accompany the geometrical transformation with a gauge transformation, designed

to leave the transition functions invariant. We will now present the results. The proofs are

simple (after consulting ref. [16]), and are left to the reader.

The invariance under translations along the x axis, implies that the metric is invariant

under the replacement

cs −→ e−2πis/qcs (2.38)

Translations along the y axis are associated with the transformation

cs −→ cs+1 (2.39)

where cq = c0. Reflections with respect to the x1 = 0 line are associated with the trans-

formation

cs −→ cs (2.40)

Finally the π/2 rotations are associated with the transformations:

cs −→
q−1∑

s′=0

1√
q
e2πiss′/qcs′ (2.41)

The square of this transformation provides the rotation by 180 degrees. In the next section

we will make use of these symmetries for the q = 2 case.

3. Two-vortex dynamics

Here we will study with higher detail the specially interesting case of two vortex dynamics.

As mentioned previously, the fibre F of the moduli space is diffeomorphic to the two-sphere.

In the first part of this section we will explain the different coordinates that we will be

using. Then we will present our results focusing on two different regimes. For volumes not

too far from the Bradlow limit, a few orders in the expansion provide a good description of

the metric and dynamics. It turns out that the metric is fully determined by fixing a small

number of real constants. After explaining this general structure, we give the numerical

value of the 17 constants necessary to fix the metric up to fifth order. With this information

the corresponding two-vortex dynamics is analysed. On the opposite extreme we have the

case of very large torus sizes. In this regime, we expect our results to match with the

case of vortices in the plane. By analysing the results up to 40th order in the expansion

for a 40 × 40 grid of points in the moduli space F , we verify that this is the case. Our

method proves to be strongly competitive in extracting information about the metric and

scattering of vortices on the plane.

Our formalism, given in the previous section, expressed the metric in homogeneous

coordinates:

ds2 = gijdcidcj (3.1)

and deduced certain properties for the hermitian matrix gij , and its expansion in powers

of ε. In particular, the metric function satisfies c1gi1 + c2gi2 = 0. Going over to the
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non-homogeneous complex coordinate Z = c2
c1

, we get

ds2 =
f̃(Z,Z)

(1 + |Z|2)2
dZdZ (3.2)

where f̃(Z,Z) = ||c||2Tr(g) = ||c||2(g11 + g22). It is also useful to express the metric in

spherical coordinates (θ, ϕ), defined by the following change of variables:

2a

1 + |Z|2 = sin θ cos ϕ (3.3a)

−2b

1 + |Z|2 = cos θ (3.3b)

where a, and b are the real and imaginary parts of Z (Z = a + ıb). In these coordinates

the metric takes the form:

ds2 =
f̃s(θ, ψ)

4

(
dθ2 + sin2 θ dϕ2

)
(3.4)

where, the function f̃s is the same as f̃ but expressed in the new variables.

We will also use the more conventional coordinates of the moduli space: the zeros of

the Higgs field. Let z = u be the location of one of the zeroes (the position of the other zero

is given by the centre of mass condition). In order for the change of variables to remain

ε-independent, we will consider first w, the position of the zero relative to the torus, given

by:

w =
4π

l1
u (3.5)

Now, we can make use of the expressions given in ref. [16] to give the holomorphic change

of coordinates:

Z(w) = −ϑ3(w|ı2τ)

ϑ2(w|ı2τ)
= −Ψ00(w)

Ψ01(w)
(3.6)

where ϑi(z|t) are the ith classical Jacobi theta functions2 and τ = l2/l1. For ease of nota-

tion in the next formulas we will omit the second argument of theta functions, assuming

2All of the four classical Jacobi theta functions can be defined in terms of the theta function with

characteristics (see footnote 1, page 7)

ϑ3(z|t) = ϑ

"

0

0

#

(z|t) (3.7a)

ϑ1(z|t) = −ϑ

"

1/2

1/2

#

(z|t) (3.7b)

ϑ2(z|t) = ϑ

"

1/2

0

#

(z|t) (3.7c)

ϑ4(z|t) = ϑ

"

0

1/2

#

(z|t) (3.7d)

See ref. [34] for more detailed information about Jacobi theta functions.
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it is equal to ı2τ). Finally, we arrive to the form of the metric in the relative position

coordinate w:

ds2 = f̃w(w,w)|ϑ4(0)|4
|ϑ1(w)|2|ϑ4(w)|2

(|ϑ2(w)|2 + |ϑ3(w)|2)2
dwdw (3.8)

where f̃w is obtained from f̃ by change of variables. From here, one can trivially re-express

the metric using u and u as coordinates.

After the presentation of the coordinates we will now deduce the implications for the

function f̃ of the properties of the metric studied in the previous section (The Kähler

property is obvious in our case). Let us examine how the symmetry transformations act

on the variable Z. Translations along both axis lead to the transformations Z −→ −Z and

Z −→ 1/Z. Reflection invariance leads to the transformation property Z −→ Z. Hence,

the function f̃(Z,Z) must be even and symmetric under the exchange of its arguments and

satisfy

f̃(Z,Z) = f̃

(
1

Z
,

1

Z

)
(3.9)

Finally, the transformation associated with π/2 rotations (if l1 = l2) corresponds to

Z −→ 1 − Z

1 + Z
(3.10)

implying that f̃ must be invariant under this change of variables.

3.1 Near the Bradlow limit

Here we will examine the first few orders of the expansion of f̃ in powers of ε. These

terms will describe quite accurately the structure of the metric for small values of ε or,

equivalently, for torus sizes which are not too large compared with the critical area of

Bradlow.

As explained in the previous section, the contribution of order εN to the metric tensor

||c||2g(N)
ij is a polynomial of degree 2N in ci/||c||. Going over to the variable Z, we conclude

that the Nth order contribution to f̃(Z,Z) is given by

f̃ (N)(Z,Z) =
PN (Z,Z)

(1 + |z|2)(N−1)
(3.11)

where PN (Z,Z) is a polynomial of degree 2N − 2 in its arguments. The symmetries

imply certain restrictions on the coefficients of this polynomial. Writing Z = a + ib, we

conclude that PN (Z,Z) is a real polynomial in a2 and b2. This brings down the number of

coefficients to N(N +1)/2. Further restrictions follow from the symmetry Z −→ 1/Z. It is

easier to express them in terms of the variables θ and ϕ defined in eq. (3.3). One concludes

that f̃
(N)
s (θ, ϕ) is a polynomial in cos2(θ) and sin2(θ) sin2(ϕ) of degree (N − 1). This is

exemplified by the first two orders, explicitly calculated in appendix A. The leading order

term reduces in our case to the a constant curvature metric on the sphere of radius
√

εA
4π .

The next order is given by a sum of three pieces, which are related by the condition that

the total contribution to the area is zero.
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O(3) O(2)

A
(3)
00 1.57 24 57 43 63 76 56(1) × 10−1 A

(2)
00 2.09 85 65 63 87 72 34 78 07 × 10−1

A
(3)
10 −7.35 97 58 95 32 71 25 × 10−1 A

(2)
10 −6.29 56 96 91 63 17 0439 78 × 10−1

A
(3)
20 4.40 39 77 74 02 36 00 × 10−1 O(5)

O(4) A
(5)
00 3.24 86 80 02 33 12 76 × 10−1

A
(4)
00 2.56 44 31 24 38 37 31 64(1) × 10−1 A

(5)
10 −1.59 28 19 34 17 36 19 6

A
(4)
10 −1.09 63 43 50 68 01 26(2) A

(5)
20 2.35 30 76 79 79 16 14 0

A
(4)
20 1.12 62 17 59 37 90 85(1) A

(5)
30 −1.33 17 87 41 82 85 50 3

A
(4)
30 −3.23 47 12 72 58 54 03(4) × 10−1 A

(5)
40 2.44 37 72 51 19 98 28 × 10−1

A
(4)
01 −2.62 60 73 46 53 83 54(1) × 10−1 A

(5)
01 −4.46 53 65 89 63 78 00 × 10−1

A
(5)
11 4.62 92 29 53 30 50 51 × 10−1

Table 1: Numerical coefficients which determine the two-vortex metric up to fifth order for l1 = l2.

We will now restrict to the most symmetric case l1 = l2. The additional symmetry

resulting from 90 degree rotations, implies the following general form:

f̃ (N)
s (θ, ϕ) =

A
π

j+2k≤N−1∑

j,k=0

A
(N)
jk cos2j θ sin4k θ cos2k 2ϕ (3.12)

where A
(N)
jk are real coefficients. It is relatively easy to compute these coefficients numer-

ically up to machine double precision. The results up to fifth order of the expansion are

collected in table 1.

From eq. (3.12) one sees that the number of terms grows like N2/4, although from the

table we see that some coefficients turn out to be 0. In addition, there are relations among

them. For example, A
(2)
10 = −3A

(2)
00 . This is a particular case of the restriction following

from the vanishing of the volume contribution beyond the leading order. This leads to the

following relations among the coefficients:

∑

jk

A
(N)
jk

Γ
(
j + 1

2

)
[(2k)!]2

(k!)222k+1Γ
(
j + 2k + 3

2

) = 0 (3.13)

which are nicely satisfied by our coefficients up to machine double precision. This provides

a non-trivial check of our numerical determination. Alternatively to eq. (3.12) one could

have used an expansion in spherical harmonics. The volume condition implies that the

coefficient of Y00(θ, ϕ) should vanish.

We will now analyse the two-vortex dynamics that follows from our fifth order metric.

This is governed by the Hamiltonian

H =
1

f̃(θ, ϕ)

(
p2

θ +
p2

ϕ

sin2 θ

)
(3.14)
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The equations of motion are

θ̇ =
2pθ

f̃
(3.15a)

ϕ̇ =
2pϕ

f̃ sin2 θ
(3.15b)

ṗθ =
1

f̃

(
E

∂f̃

∂θ
+ 2p2

ϕ

cos θ

sin3 θ

)
(3.15c)

ṗϕ =
E

f̃

∂f̃

∂ϕ
(3.15d)

Where E is the energy of the system, that is conserved. These equations can be easily

integrated numerically to obtain the trajectories in vortex moduli space.

Notice, that up to third order, the metric is independent of ϕ. Hence, pϕ is a conserved

quantity, and the problem is integrable. In this case, the equation for the trajectory in the

moduli space is given by

ϕf = ϕ0 +

∫ θf

θ0

dθ

sin2 θ

√
f̃(θ)
b2

− 1
sin2 θ

(3.16)

where b =
pϕ√
E

.

An interesting mathematical question is whether the two vortex dynamics on the torus

is integrable for all values of ε. As we have seen, this is the case up to third order in the

expansion. In the next subsection we will mention that it is also the case in the ε −→ 1 limit,

since then we recover rotational invariance and angular momentum becomes a conserved

quantity. Our metric calculations could be used to give a numerical and/or analytical

answer to this question. We will not attempt to study that point here. Instead we will

address the much simpler problem of obtaining and describing the Poincare maps obtained

from the third order and fifth order metric. Results are displayed in figure 1 for two values

of ε. We see signs of how some invariant-tori seem to be destroyed, pointing to the non-

integrability of the metric truncated to fifth order. This is not surprising and does not

conflict with the conjectured integrability for all values of ε. Our results, nonetheless, can

be considered as a first step, which might help in pointing to the relevant region of phase

space where one should look.

3.2 Dynamics of vortices in the plane (ε → 1 limit)

The dynamics of the Abelian Higgs model in R
2 is a well studied problem, both analyti-

cally [20, 21] and numerically [22, 21]. Following the notation of ref. [21] we might write

ds2 = 8F 2(2|u|) dudu (3.17)

Once the function F (2|u|) is obtained, the dynamics in the geodesic approximation is

completely determined. The form of the function F (2|u|) has been deduced analytically

for the special case of asymptotically separated vortices [27], and has also been studied
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(a) Poincare map for ε = 0.4 and E = 60.0 for

the first 3 orders.
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(b) Poincare map for ε = 0.4 and E = 60.0 for

the first 5 orders.
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(c) Detail of the Poincare map for ε = 0.4 and

E = 200.0 for the first 3 orders.
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(d) Detail of the Poincare map for ε = 0.4 and

E = 200.0 for the first 5 orders.

Figure 1: Examples of Poincare maps for the dynamics near the Bradlow limit.

numerically several times [20, 21]. In this paper we will use our expansion method to

obtain a precise determination of F (2|u|) for all values of |u|.

We will naturally assume that, if the torus is large enough compared both with the

typical size of vortices, and with the distance between them, the dynamics will be accurately

described by the one in R
2. This means that, at least formally, we can calculate the desired

function F (2|u|) by taking the ε −→ 1 limit while keeping u fixed. At the beginning of

this section we showed how to express the metric in the relative torus position coordinate

w. The formula (eq. (3.8)) involves f̃w times a known function arising from the change of

variables. We will first study the behaviour of the latter factor in the appropriate limit

(ε −→ 1 , u fixed). Restricting to the l1 = l2 = l case and recalling that w = u
√

2π(1 − ε)
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we get: (
4π

l

)2

|ϑ4(0)|4
|ϑ1(w)|2|ϑ4(w)|2

(|ϑ2(w)|2 + |ϑ3(w)|2)2
ε→1−→ 16π2Z2

2

(1 + Z2
0 )2

(1 − ε)2|u|2 (3.18)

where3 Z2 = −1
2

ϑ3(0)ϑ4
4(0)

ϑ2(0)
, and Z0 = −ϑ3(0)/ϑ2(0).

In summary, the function F 2(2|u|) can be recovered as

F 2(2|u|) = lim
ε−→1

(1 − ε)2f̃w(u
√

2π(1 − ε), u
√

2π(1 − ε), ε)
2π2Z2

2

(1 + Z2
0 )2

|u|2 (3.19)

In practice, to obtain an approximation to F 2(2|u|) from our expansion we proceeded as

follows. We computed the coefficients in the expansion in ε of the metric up to 40th order,

for a regular rectangular array of points in the complex plane of the variable w. The range

of values is that of a complex torus. Due to symmetries (which we checked) it is enough

to take values in one quadrant. We considered a grid of 40 × 40 points. Getting to order

40 is feasible by implementing the iterative solution of the equations on a computer. This

is possible using a Fourier expansion of the functions h and Ḣ and truncating to a finite

number of Fourier coefficients. One can tune this finite number until the precision attained

in the function f̃ is of 14-16 decimal places. Due to the fast convergence of the Fourier

coefficients, this procedure is not very costly. The computation in a conventional PC takes

around 50 hours.

Once f̃ is determined at the grid points, in order to extract the values of F 2(2|u|) we

proceeded as follows. For a given value of |u| we take many different values of w from the

grid and for each we compute the corresponding value of ε. For that value we sum the

series up to 40th order and multiply by the function associated to the change of variables

(eq. (3.8)). Finally, for each value of |u| we obtain we obtain a collection of numbers for

different values of ε and for different phases of u. A typical case is displayed in figure 2,

where we considered points having |u| = 1 and situated along the diagonal Re(u) = Im(u).

The value of F 2(2|u|) is the limit for ε approaching 1. Unfortunately, the larger values of ε

are more seriously affected by the truncation of the series to 40 orders. This is exemplified

by the errors attached to the points of the figure. These are obtained by subtracting the

result obtained for 35 orders to that of 40 orders. To obtain a more precise determination

of the value of F (2|u|) we made two corrections. First of all, we partially corrected for

the truncation errors by estimating the contribution of the terms from the 41st on. The

precise way in which this is done will be explained later. This additional contribution

does not affect significantly points for which the error obtained by comparing the 35th and

40th order is tiny. On the opposite extreme the contribution becomes unreliable when this

error becomes very large. This occurs typically for values of ε exceeding 0.95 (areas which

3For the rectangular symmetric case l1 = l2, the numerical values of Z0 and Z2 are

Z0 = −1 −
√

2

Z2 = −1.18 91 73 93 79 71 08 15
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Figure 2: The points are the values of the left hand side of eq. (3.19) for |u| = 1.0 as a function

of ε, computed from the first 40 orders of our expansion. Error bars represent the size of the last 5

terms of the expansion. The solid line is a fit with eq. (3.20).

are more than 20 times the critical area). We will therefore omit those points from our

analysis.

To extract a good determination of F 2(x) from our data we face the problem of ex-

trapolating to ε = 1. This implies relating the results for a large torus with that of the

plane. The torus case can be considered a solution of the plane with an infinite number of

vortices — two per l × l cell. As the torus gets larger the replica vortices are increasingly

far away, so that it is reasonable to use the analytic result for the case of a large number of

asymptotically separated vortices to describe the approach. Using the result of ref. [27] we

expect an additional contribution to the metric proportional to
∑

r K0(Dr), where K0 is

the modified Bessel function of the second kind and Dr is the distance to the replica vortex

r. In the limit of large torus sizes and fixed |u|, this predicts a contribution proportional

to K0(l). On the basis of the asymptotic behaviour of Bessel functions we decided to fit

our data for each value of u to a formula of the form

A − B(1 − ε)
1
4 e−

√
8π/(1−ε) (3.20)

For our |u| = 1 example, the result is displayed by the solid line in figure 2, and the fitted

parameters are B = 145.0(5) and A = F 2(2) = 0.8791(4). The error reflects systematics

due to changing the range of the fit as well as the relative weighting of the points. For

other phases of u we get compatible results. For example, for purely real or imaginary

values of u we obtain F 2(2) = 0.8800(6), consistent with rotational invariance.
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Figure 3: The metric computed using 40 orders of the Bradlow parameter expansion (red points),

versus the |u| → 0 approximation eq. (3.25) (green dashed line) and the asymptotic form of the

metric eq. (3.26) (black solid line).

Proceeding in the same way for several values of |u| we arrive at the points displayed

in figure 3. The errors are smaller than the size of the points in the figure. In all the range

up to |u| ≥ 2 the error is smaller than 6 10−4 and for |u| > 0.5 the relative error is smaller

than 1 part in 103.

It is quite interesting to analyse the implications of the scaling limit for the coefficients

of the ε expansion. For that purpose it is convenient to write ε = e−δ and replace the limit

by δ −→ 0. The condition that at large volumes the metric tends to that of the plane

implies:

F 2(2|u|) = lim
δ→0

δ2 2π2Z2
2

(1 + Z2
0 )2

|u|2
∞∑

N=1

f̃ (N)(u
√

2πδ, u
√

2πδ)e−Nδ (3.21)

It is clear that as δ tends to zero, more terms in the series become relevant. It is tempting

to assume that the infinite sum tends to an integral over the variable y = Nδ. This would

imply the following behaviour of the coefficients:

lim
N−→∞

f̃ (N)
w

(
u

√
2πy

N
, u

√
2πy

N

)
δ

8
= h(|u|√y) (3.22)

In this case the limiting function h(|u|√y) would be related to F 2(2|u|) as follows:

F 2(2|u|) =
16π2Z2

2

(1 + Z2
0 )2

|u|2
∫ ∞

0
e−yh(|u|√y) dy (3.23)

which is essentially a Laplace transform.
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With our results for f̃
(N)
w up to N = 40 and the set of values of w spanning the

aforementioned 40× 40 grid, we have analysed the validity of eq. (3.22). For that purpose

we plot in figure 4 the coefficients satisfying 35 ≤ N ≤ 40 and all values of u in the range.

The smoothness and thinness of the resulting curve, approximating h(x), is a test of our

scaling hypothesis. Errors, signalled by the spread of the values, grow with x. For example,

including all coefficients N > 20 would provide little changes in the thickness of the curve

up to x ≈ 5. Beyond, the thickness becomes a sizable fraction of the value.

The function h(x) for small x, as determined from our results, fits nicely to a behaviour

of the form

h(x) = a − bx4 + O(x5) (3.24)

where a = 0.335(1) and b = 0.16(1). This expansion implies that for small values of the

argument the metric function F 2(2|u|) behaves as:

F 2(2|u|) =
16π2Z2

2

(1 + Z2
0 )2

(
a|u|2 − 2b|u|6

)
+ O(|u|7) (3.25)

The function on the left-hand side of the previous formula is displayed in figure 3. It

matches nicely to the behaviour of the previously determined points (in red). For large

values of |u| the data also matches with the prediction coming from the asymptotic be-

haviour at large distances (ref. [27]) given by

F 2(2|u|) |u|→∞−→ 1 − 8
√

2K0(4|u|) (3.26)

where K0(x) is the modified Bessel function of the second kind.

To conclude we point out that our knowledge of h(x) enables one to estimate the

error introduced by the truncation in the number of terms in the ε expansion. For that

one has simply to use the expression given in eq. (3.23) with the integral restricted to

y > −N log(ε), where N is the maximum order computed. We have tested this estimation

with our data points and N = 40. As mentioned previously, it improves the results for not

too large values of ε.

3.2.1 Scattering of vortices on the plane

Once the function F (2|u|) has been obtained, it is trivial to compute the dynamics of the

vortices. The Lagrangian, when written in polar coordinates 2u = reıθ, is given by:

T = πF 2(r)
[
ṙ2 + r2θ̇2

]
(3.27)

Since the energy is conserved, and we have rotational invariance (pθ is also conserved), the

system is integrable, and we have

θf = π −
∫ ∞

rf

dr

r
√

r2

b2
F 2(2r) − 1

(3.28)

where b2 =
πp2

θ

4T is the impact parameter. In particular, if we call rm the minimum distance

between one vortex and the centre of mass during the trajectory, the scattering angle is
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Figure 4: We plot the left-hand side of eq. (3.22) for N in the range 35-40, and fixed x = |u|√y.

given by

θsc = π − 2

∫ ∞

rm

dr

r
√

r2

b2
F 2(r) − 1

(3.29)

Using our numerical data of figure 3 we can calculate these integrals. For values of r > 5

we will use the asymptotic form of the metric, and for r < 0.5 we can use our approximation

eq. (3.25). For the intermediate values we will use the cubic spline interpolating polynomial.

In the figure 5 we have some examples of trajectories for different values of the impact

parameter.

We can also plot the scattering angle versus the impact parameter. The results are

shown in figure 6. Errors were estimated in the following way. We generate a random set of

values of F (2|u|) assuming a Gaussian distribution around the central value and standard

deviation fixed by the error. For each realization we compute the cubic spline interpolation

polynomial and using it and the small and large approximation functions we compute the

scattering angle for each impact parameter. The final errors are estimated on the basis of

1000 realizations. They are of the order of 1 part in 104 or smaller.

4. Conclusions

In this paper we have shown how the Bradlow parameter expansion can be used to compute

the metric of the moduli space of solutions of the Abelian Higgs model on the Torus. This

extends our previous work [16] where this expansion was introduced as a tool to construct

the classical vortex solutions on the Torus. More precisely, the expansion is performed in
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Figure 5: Scattering trajectories of two vortices.
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Figure 6: Scattering Angle vs. impact parameter.

the variable ε = 1 − 2f , where f is the average magnetic field. To any finite order in the

expansion the metric has a known form depending on a small number of real parameters.

We give their analytic expression up to second order for arbitrary number of vortices q. The
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leading term, giving the Bradlow limit result, is proportional to the Fubini-Study metric.

This coincides with results obtained for the two-sphere [30]. The second order result

depends on q2 constants, which are given in the form of rapidly decreasing double infinite

sums. Although increasingly complicated it is not too hard to go beyond this order. Rather

than attempting this for the general vortex case, we have concentrated on the two-vortex

case. We have given the form of the metric up to 5th order and the numerical value of their

15 real coefficients with 14-16 significant digits (machine double precision). Furthermore, it

is possible to go much beyond this order in the computation of the metric at specific points

of the moduli space by means of a computer. Essentially, the implementation is based on

the truncation of the infinite sums to finite ones. In this way we have gone up to 40th order

with fairly limited computational effort. Furthermore, the fast convergence of the sums

stills maintains the double machine precision accuracy in the determination of the metric.

Having so many terms in the expansion has allowed us to extrapolate our results to the

infinite area case (vortices on the plane) with quite impressive results. The resulting metric

is consistent with all the previously known results, both analytical in certain limits and

numerical. The result have fairly small and controlled errors, arising from the extrapolation

to infinite volume and the truncation in the expansion.

The computation of the metric allows the study of vortex scattering, known to be a

good approximation up to relatively high vortex velocities. The presence of the torus can

be used to mimic the behaviour of vortices in a dense environment. A natural question

that poses itself is the possibility that two-vortex dynamics on the torus is integrable. This

is actually the case for both small (close to critical) torus sizes as for infinitely large ones

(the plane). We have analysed Poincare maps as a first step in this study. Furthermore, we

emphasise that, as in our previous work, our method has been found to be a competitive

tool to study the properties of vortices on the plane. It has important advantages over

other methods: its semi-analytical nature and the possibility of dealing with an arbitrary

number of vortices. In this work, for example, we have given the curves (with errors)

that describe the functional dependence of the two-vortex scattering angle with the impact

parameter.

To conclude, we want to mention that the Bradlow expansion method is generalisable

to many other cases and theories. For example, it can be applied to any other two-

dimensional compact manifold. Furthermore, a similar expansion seems to apply in other

cases where a Bradlow parameter can be introduced [17], such as abelian and non-abelian

gauge-Higgs theories in Kähler manifolds of arbitrary dimensionality. The methodology

can be extended beyond. For example, a related expansion, is known to exist in the study

of self-dual configurations on the 4 dimensional torus [18]. Recently [35, 36], it has also

been applied to the study of abelian vortices in a non commutative torus. In all these

theories, apart from the determination of the shape of the solutions and the form of the

metric of the moduli space, other problems can be attacked. In particular, one can study

the eigenfunctions and eigenvalues of the Dirac operator in a vortex background and also

compute quantum corrections to the vortex. These problems are currently under study by

the present authors.
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A. Computation of the first two orders

To lowest order we have that h(0) = ln(||c||) and Ḣ(0) =
P

i ciċi

||c||2 are constant. The symbol

||c||2 stands for
∑

i |ci|2. Hence, the lowest order metric is given by

g
(1)
ij =

A
π||c||2

(
δij −

cicj

||c||2
)

(A.1)

The matrix inside parenthesis, which we will call P, is the orthogonal projector to the

vector ci. It gives precisely the Fubini-Study metric written in homogeneous coordinates.

To the next order the metric, written in matrix notation, adopts the form:

g(2) =
A

π||c||2 P
(
−I

∑
ij ciSijcj

||c||2 + S + S̃

)
P (A.2)

where

Sij =
clck

A||c||2
∫

d2xχiχj∆
−1(χlχk)

′ (A.3)

and

S̃ij =
clck

A||c||2
∫

d2xχiχk∆
−1(χlχj)

′ (A.4)

The prime denotes the removal of the constant Fourier mode, making the inverse laplacian

∆−1 well-defined.

The computation of the integrals can be explicitly carried over by using Fourier trans-

forms. For that purpose we introduce the quantities:

Lij(~n) =
1

A

∫

T2

d2xχie
−2πıni·xi

li χj (A.5)

which are just the Fourier modes of the product χiχj . Now we remove the constant mode

(~n = 0) and denote the result as L′ij(~n). Then the integral entering in the definition of S

and S̃ is given by

Sijkl ≡ − 1

A

∫

T2

d2xχiχj∆
−1(χlχk)

′ =
∑

~n

L′ij(~n)L′lk(−~n)

ξ(~n)
(A.6)

where

ξ(~n) =
πτ

q

[
n2

1 +
n2

2

τ2

]
(A.7)
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and τ = l2/l1. The explicit value of the coefficients depends on the choice of basis. For the

choice given earlier χs+1 = Ψ0s defined in equation (A.24) of our previous paper [16], the

coefficients are given (as a particular case) of eq. (A.30) of that paper. The matrix L(~n)

becomes:

L(n) = Γ(~n)e−
ξ(~n)

2 (A.8)

where the matrices Γ(~n) are defined as

Γ(~n) = Pn1Qn2e
−ıπ

n1n2
q (A.9)

where P and Q are ‘t Hooft q × q matrices (Pij = δji+1, Q = diag(exp 2πis/q)). The

matrices Γ(~n) are unitary and satisfy Γ†(~n) = Γ(−~n). From here one realises that, the

coefficients Sijkl can be expressed in terms of q2 constants K(~s) as follows:

Sijkl =
∑

~s

K(~s) Γij(~s) Γkl( ~−s) (A.10)

where ~s is a 2 component vector with components si ∈ {0, . . . , q − 1}. From eq. (A.6) one

derives:

K(~s) =
∑

~k∈Z2

e−ξ(~s+q~k)

ξ(~s + q~k)
=

∫ ∞

1
dα

(
ϑ

[
s1/q

0

]
(0|iqατ) ϑ

[
s2/q

0

]
(0|iqα/τ) − 1

)
(A.11)

The terms in the sum decay exponentially with k2, so that a few terms in the infinite sums

over ~k suffice to obtain a very high accuracy.

The matrices Γ(~s) are a basis of the set of q × q matrices. Hence, it is possible to

express the metric tensor to this order as a linear combination of these matrices. The

coefficients are functions of the following quadratic forms in ci/||c||:

P (~s) =
cΓ(−~s)c

||c||2 (A.12)

These are not independent, and satisfy certain relations. In particular one has P (~0) = 1

and ∑

~s 6=~0

|P (~s)|2 = q − 1 (A.13)

As an example, we give the explicit expression for the trace of g(2):

||c||2Tr(g(2)) =
A
π

∑

~s6=~0

K(~s)((q + 1)|P (~s)|2 − 1) (A.14)

From here it is trivial to reproduce the q = 2 case given in section 3.1. Notice that

(P (1, 0), P (0, 1), P (1, 1)) is a 3-component unit vector whose expression in terms of spher-

ical coordinates coincides with our definition of θ and ϕ in eq. (3.3). For the symmetric

l1 = l2 case we obtain

f̃ (2) =
A
π

(K(1, 0) − K(1, 1))(1 − 3|P (1, 1)|2) (A.15)
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where P (1, 1) = cos θ. This reproduces the result given in table 1. Notice that the result is

proportional to the second Legendre polynomial in cos θ as follows from the area condition.

Going over to higher orders is tedious but presents essentially no new difficulties. We

have obtained the analytic result to third order for the q = 2, τ = 1 case, matching the

value given in table 1.
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